在IC晶片領域中為了追求更快的運算速度,因此不斷地縮小元件尺寸,相對在系統電路方面的複雜度不斷的提升,一來一往之下使得金屬線連結在傳輸時因為電阻與電容產生之延遲效應(RC delay)更加顯著,使其操作速度因連結方式而有所限制,同時傳輸時失真及損耗方面的問題也因此日益嚴重。相較於電子,光子沒有電荷與質量,不容易受到外界因素的干擾,在傳輸上也有較低的傳輸損耗及功率消耗。因此為了在速度上有所突破,近年來許多研究團隊利用光連結(Optical interconnect)系統來取代電連結(Electrical interconnect)系統,而將光學元件整合入積體電路中形成OEIC(opto-electronic integrated circuits)成為積體光學(Integrated Optics)研究的主流。其中矽光子(silicon photonic)與光連結(Optical interconnects)提供了較低成本的解決方法,也因此逐漸成為許多團隊積極研究的一個主題。
在矽光子學中可分成幾個大部分光訊號調變器、光訊號切換器、雷射二極體及光訊號接收器、光源耦合技術,而本實驗室主要致力於光訊號調變器的研究與設計。在調變器中,調變原理可分成電跟熱兩種不同機制,分別為電光效應(Electro-optic effect)及熱光效應(Thermo-optic effect)。在電光效應又可分為兩種不同的形式:一是利用外加電場改變材料之折射率稱為Electro-refraction effect,另一則是利用外加電場改變材料之吸收係數稱為Electro-absorption effect。在Electro-refraction中有Kerr effect、Pockels effect及free carrier plasma dispersion effect幾種不同的效應,由於矽原子的排列為中心對稱,所以Pockels effect在矽基板中不存在。在Electro-absorption中則有Franz-Keldysh Effect及Quantum Confirmed Stark Effect兩種效應。在熱光效應中因材料溫度改變同樣可造成折射係數或吸收係數改變兩種不同的形式,此處將重點放在因溫度改變造成吸收係數變化之熱光吸收調變器上。
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般訪客 |
10則/每30天 |
5/則/每30天 |
付費下載 |
VIP會員 |
無限制 |
20則/每30天 |
付費下載 |