本文說明Miros公司設計的一套Wavex感測器系統,如何精準測量波浪、洋流、以及對水航速,並使用深度學習網路來自動辨識測量下取得的雷達資料,進一步提升Wavex系統的表現與可靠度。
對海上船隻而言,海浪、洋流、對水航速(speed through water)等量測資料的準確性,對於船隻執行各種任務,如燃料優化、或在受限區域內導航等,具有很高的價值。舉例來說,對水航速量測錯誤,即使只是一些微小誤差,就有可能對船艦效能的計算帶來重大錯誤,讓每天的燃料使用量多出好幾十噸。傳統上,對水航速是透過水下的測速儀器來測量,這類儀器使用船體承受的水壓差異(水壓計程儀),通過聲納訊號的都卜勒偏移(都卜勒測速儀;Doppler velocity log),或通過藉由通電的線圈與移動水體的交互作用產生的訊號(電磁式測速儀;electromagnetic log)來估計船速。這些系統維護起來的成本高昂,而且容易因為泡沫、亂流或其他船隻運動產生的干擾受到影響。
在Miros公司,我們設計了一套稱為Wavex的感測器系統,它可以精準地測量波浪、洋流、及對水航速。我們這一個系統處理從常見的海用X波段導航雷達的數位化影像,消除干擾問題以及與水下感測器有關的維護費用。我們也使用深度學習網路來自動辨識,例如下大雨等在較差量測條件下所取得的雷達影像,以進一步提升Wavex的表現與可靠度(圖1)。
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般訪客 |
10則/每30天 |
5/則/每30天 |
付費下載 |
VIP會員 |
無限制 |
20則/每30天 |
付費下載 |