账号:
密码:
CTIMES / 新闻 /
判读医疗影像 Google机器学习可??预防糖尿病患失明
 

Rapport \u3011    2017年08月08日 星期二

浏览人次:【4036】
  

人工智慧(AI)究竟可如何改善人类生活?该项技术目前已经被应用於许多产业中,但若是要说「嘉惠」於人类,那麽必定非医疗领域莫属;看好人工智慧在医疗领域中的应用,IBM、微软(Microsoft)等大厂皆已将AI导入医疗领域中;如今Google也欲透过该公司的TenserFlow机器学习技术,以辨识糖尿病患者视网膜影像,降低罹患该项病症患者失明的可能性。

Google台湾区分公司总经理简立峰认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力。
Google台湾区分公司总经理简立峰认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力。

Google研究团队产品经理、医学博士彭浩怡举例,在印度有高达45%的糖尿病患,因为缺乏专业眼科医生,所以在视网膜病变确诊之前早已失明;但糖尿病视网膜病变其实是可预防的,只需要有足够的专业医生,并透过视网膜眼底图像即可判断病患的视网膜是否已产生病变。

彭浩怡表示,若是运用机器学习技术,即可缩短医生判读的时间,筛检出有问题的视网膜影像。为此,该公司团队聘请54名美国食药监局(FDA)认可的眼科医师与相关专业人士,取得13万张眼底图像,最终标记出超过88万个确诊症状,利用这些资料让机器可进行判读作业。

据了解,彭浩怡的团队建立了26层的深度卷积神经网路(Convolutional Neural Network),标记好素材後再对机器进行训练。随着真实资料量日益丰富,再加上运算能力较过往强大数千万倍,使得神经网路表现较以往其他的网路更好。

除了糖尿病视网膜病变的判断之外,彭浩怡也表示,该公司的TensorFlow机器学习技术目前也用於判读乳癌或前列腺癌等切片影像中,希??未来可协助相关医生进行病症判断。

Google台湾区分公司总经理简立峰也认为,目前影像辨识是人工智慧这个深度学习领域里面最成功的部份,且在医学领域中有相当大的应用潜力,值得台湾相关领域关注;再加上台湾糖尿病盛行率为世界第二,仅次於日本,所以国内也有相当庞大的相关资料量。

最後,彭浩怡也表示,未来深度学习将往临床验证、建立医疗团队的信任感,以及机器辨识流程符合医生工作需求等三大方向进行。由於要使医界愿意信任且采用新技术有一定的难度,且新式工具是真正可协助医生进行诊断的利器,这些层面,都是未来深度学习需要克服的挑战。

關鍵字: 医疗  機器學習  糖尿病  人工智能  糖尿病  Google 
相关新闻
扮演制造智慧化关键 AI将成未来工厂要角
NVIDIA携手日本小松制作所 透过AI 全面提升施工环境的安全与效率
微软跨界合作力推科技女力 731名女大学生报名抢搭「机器学习」热潮
人工智慧产学研联盟成立大会
联发科与Google合作 将支援Android Oreo Go版本智慧手机
comments powered by Disqus
相关讨论
  相关新品
mbed
原厂/品牌:RS
供应商:RS
產品類別:
Arduino
原厂/品牌:RS
供应商:RS
產品類別:
Raspberry Pi
原厂/品牌:RS
供应商:RS
產品類別:
  相关产品
» AMD释出Radeon Software Adrenalin Edition绘图驱动软体
» Maxim推出MAX14748 15W USB Type-C充电器,简化可?式消费产品设计
» 意法半导体先进图像防震陀螺仪让下一代智慧型手机具备光学防手震技术
» 德州仪器SimpleLink?MCU平台整合全新Amazon FreeRTOS,实现快速云端连接
» Silicon Labs推出满足高速收发器需求的新一代高性能振荡器
  相关文章
» 机器人时代,谁为高科技安全把关?
» 智慧腕带式装置呈现成长态势
» 物联网应用产品的电源设计困扰
» 未来电源和数据的交融与创新
» 中小型企业的电力风险规划与备援策略
  相关资源
» Power Management Solutions for Altera FPGAs

AD


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2017 远播信息股份有限公司版权所有 Powered by O3
地址:台北市中山北路三段29号11楼 / 电话 (02)2585-5526 / E-Mail: webmaster@ctimes.com.tw