雖然世界現正處於人工智慧(AI)發展史上的關鍵時期,人類以前所未有的規模和速度在各個領域應用。但隨著AI使用日漸普及,社會上興起關於倫理、責任、信任的討論,企業也需在使用AI提升效率的同時做好風險管理。法商施耐德電機(Schneider Electric)今(21)日也建議企業,在開發與使用AI時,必須符合法律規範,同時考量道德與信任,盡力避免產生偏誤或偏見。
|
施耐德電機建議審慎檢視AI可能發生的偏誤或偏見,不應盲目相信 |
尤其是現階段AI仍有諸多不完善之處,例如圖像辨識無法精確判別差異、以及招聘建議可能含有偏見等種種例子,顯示人們不應完全信任AI。施耐德電機也建議企業使用AI時,可參考以下準則自我檢視:
1. 符合法律與規範:如施耐德電機擁有完善的網路安全政策,符合ISO/IEC 29147和ISO/IEC 30111的標準,同時積極參與AI法律的制訂,並承諾完全遵守相關法規。
2. 道德與信任守則:施耐德電機以最高標準的道德與信任,對減少碳排與降低能耗做出承諾,而將AI導入解決方案時,也以同樣高標準的道德與信任作為原則。
3. 內部政策與流程:施耐德電機擁有數位風險與數據管理主管負責AI專案,並成立RAI工作小組(Responsible AI Workgroup),跟進歐洲與美國最新的AI法案,持續關注倫理議題。
此外,上下文情境、數據來源、解釋方式都可能導致AI產生的結果有偏誤或偏見,這讓AI信任議題變得極為複雜。以機器學習(ML,Machine Learning)為例,就算風險與其他數位技術類似,但由於系統更加複雜、風險的規模便更大,更難避免、追蹤和解釋。施耐德電機認為,若想克服這些挑戰,建立可信任的AI,有以下兩點關鍵:
1. 專業知識和AI專家:因為AI應用將對人類產生深遠的影響,所以AI專家和數據科學家往往要擔任道德的守門員,進行檢測偏見、建立回饋循環(Feedback Loops)來檢驗異常運行,以避免資料下毒攻擊(Data Poisoning)。在發展與應用AI時,企業必須選擇有價值的案例、挑選和清理數據、測試模型並控制其行為,都需要大量的專業知識與技術。若是出現異常時,模型需要重新學習以改善系統,並避免使用特例數據而引發偏見。
2. 風險預測:目前多數的AI監管都以風險預測為基礎,從設計階段開始,就必須考量錯誤或異常數據、網路攻擊可能導致的問題,並預測潛在後果不斷優化。AI專家藉此,能及早採取相關動作來降低風險,例如改善訓練AI模型的資料庫、檢測數據漂移(運行時的異常數據變化),盡可能做好防護措施。若AI的信心水準低於一定值,團隊也務必確保人類參與關鍵決策。
如今人們不能盲目相信AI,企業也要選擇具有專業知識且可信任的AI供應商合作,確保服務符合最高標準的倫理道德、數據隱私、網路安全。施耐德電機提供關鍵設施的解決方案,包含國家電網、核電廠、醫院、汙水處理等,因此深知道德與信任的重要性,持續開發並提供可信任的AI解決方案;並以同樣負責任的方式導入AI,確保服務與產品兼具安全、高效、可靠、公正、隱私等,實現最高標準的道德與信任。