資策會產業情報研究所(MIC)於6/1~6/10舉辦第33屆春季線上研討會《蓄勢》,針對2020年MIC揀選的10大垂直新應用領域中的「智慧製造」,MIC觀測整體發展趨勢,分別從智慧科技導入、邊緣運算導入與工業雲平台發展現況談起,剖析智慧製造未來趨勢。
中小企業面臨接班階段 為導入智慧製造絕佳時機
近年ICT零組件價格與勞工薪資成本上漲等因素影響下,資策會MIC指出,在臺灣業者製造成本提高與本業獲利表現下滑的長期趨勢下,導入智慧科技提升生產與管理效率,加速轉型已成為製造產業趨勢。其中,「提升內部營運效率」為導入智慧科技的最主要驅動力,如何運用智慧科技串聯設計、生產與銷售,再將生產資訊回饋至研發設計端是未來發展重點。觀察短中期發展,將以預測性維護、品質控管與物料搬運等技術需求為主,其中關鍵技術便是設備感測與視覺感測技術。
針對臺灣智慧製造推動狀況,資策會MIC資深產業分析師陳彥合指出,目前整體仍缺乏領頭羊,尤其是製造業營收占比71%的資訊大廠普遍以組織內部優化為主,優先開發自家解決方案,成果擴散至上下游產業鏈的意願低,「以大帶小」效果短期內應難以實現。
另一方面,家數占比96%的中小企業卻面臨二代接班階段,面對資訊化程度不足、人才斷層與投入資源有限等挑戰,目前也是導入智慧製造的絕佳契機,除了能解決人才仰賴外籍移工、經驗難以累積的問題,也能提升面對全球化市場變化快速的競爭力。
邊緣運算導入智慧製造 有四大關鍵發展趨勢
資策會MIC表示,邊緣運算的導入是智慧製造發展關鍵,目前主要有四大趨勢值得關注。第一大趨勢為邊緣運算的分散式運算與儲存思維,將融合並改變既有IT架構,為智慧製造帶來重大改變。第二大趨勢為面臨初期導入的設備建置成本,將催生出第三方管理、訂閱以及設備即服務(DaaS)的商業模式,不過資深產業分析師施柏榮也提醒,須注意後續可能衍生的「數據所有權」歸屬問題,預期將為設備承購與維運契約帶來變化。
第三大趨勢為邊緣運算結合AI進行本地型製造數據分析,資策會MIC指出,隨著邊緣運算導入智慧製造,將結合更多機器學習(ML)與深度學習(DL),形成Edge AI系統基礎架構,而邊緣運算在智慧製造中所扮演的功能,主要為數據過濾、示警功能,在未來更將走向預測服務功能。第四大趨勢,為邊緣運算結合區塊鏈與智能合約,「建構信任傳輸系統」在智慧製造未來的需求會越來越明顯,「信任」將成為新型態的企業數位資產。
工業雲與生態系為發展下一波智慧製造的關鍵
在智慧製造等垂直應用領域需求的帶動下,資策會MIC預估,2025年全球工業物聯網市場規模約9,500億美元,以垂直應用服務市場成長幅度高,占整體規模73.2%,硬體設備規模則從2018年38.7%降至2025年26.8%,預期對硬體銷售為主的供應商造成衝擊。
資深產業分析師魏傳虔表示,面對數據驅動的市場應用,目前工業雲平台、軟體即服務(SaaS)廠商開始積極透過購併、合資、策略聯盟等方式結合,除此,硬體設備大廠也開始轉型提供軟硬整合解決方案。未來應持續關注工業雲平台與生態系的構建與開放,其將成為廠商發展下一波智慧製造的關鍵。