目前來看,邊緣人工智慧(邊緣AI)的優勢是顯而易見。有必要實現即時回應的應用,如安全性敏感應用。要將原始資料傳輸至雲端的通訊成本降至最低。還有要降低耗電量、保護隱私權,並提升多個邊緣節點的擴充性。這些需求都可透過邊緣裝置內的人工智慧 (而非遠端雲端服務) 獲得最佳滿足。
然而,我們目前所知的邊緣應用無法透過單一 AI 引擎提供。家電只需辨識一組簡單的語音指令或食物容器上的圖片。更為精密複雜的監控系統或工業機器人系統則可能要融合多種輸入來源,包括影像感測器、麥克風、動作感測器等。高階的自動或半自動駕駛辨識系統需使用非常精密的深度神經網路(DNN)。CEVA SensPro2 與 NeuPro-M 平台皆涵蓋這些應用範圍。
邊緣 AI 的市場
...
...
使用者別 |
新聞閱讀限制 |
文章閱讀限制 |
出版品優惠 |
一般訪客 |
10則/每30天 |
5/則/每30天 |
付費下載 |
VIP會員 |
無限制 |
20則/每30天 |
付費下載 |