为了增加传输速率,大频宽的需求推动了毫米波频带的应用。5G NR的部署也从FR1到FR2,到了3GPP release 17标准,如何将NR扩展到71GHz更是被热烈地讨论。从另一方面来看,6G目前也来到了初期研究阶段,要实现6G,往更高频的sub-Tera Hz 研究看来势在必行。更高的频率,带来频谱资源的好处,同时也带来了许多挑战,其中最大的便是讯号的衰减。毫米波讯号的衰减比起过去在6G Hz以下的耗损还要多,这代表着需要新的技术来克服传输的距离,波束成形与阵列天线技术,刚好可以满足这样的需求,同时也带来多端囗测试需求。从另一个角度看,为了增加覆盖率,小型基地台(Small Cell)也将被赋予重要任务,对小型基地台的需求也将远大於从前。
|
Keysight台湾是德科技行销处资深专案经理郭丁豪 |
Keysight台湾是德科技行销处资深专案经理郭丁豪说,由此可看出,5G为整个生态系带来了许多新的商机,而毫米波频带的使用更随着各种挑战进而衍生出更多的机会。
我们先看看讯号在毫米波频带面临更大的衰减,量测也变得相对困难。这意味着量测路径损耗大,如何减短损耗路径,并将量测端囗贴近待测物至关重要。另外整个量测系统,包含量测平面需减少损耗,并经过校正,如此一来才能精准地量测毫米波讯号。是德科技创新的接收机校正器(U9361M),能协助校正信号分析仪并延伸量测平面。另外,我们也可使用M1740A远端射频收发模组(RRH)在研发或生产线,将量测平面延伸接近待测物,这些都是避免讯号减的方法。
如果产品是毫米波元件,元件本身为减少衰减,整合度高,元件数量增加且元件面积小,很难再使用接触式量测,则必须要透过空中传输(Over the Air;OTA)进行测试,测试时必须克服环境干扰,新的暗室(chamber)技术也跟着被使用。由於在暗室里量测探针与代测物距离是跟天线大小平方成正比,却又与波长成反比,也就是说频率越高代表所需距离就越大,而随着多天线考量,距离也会更大,因此测试时经常会考虑使用紧缩场(CATR)技术。