隨著各種可攜式電子產品的普及化,鎳氫、鎳鎘電池用快速充電器成為生活中的必需品,然而大部份的充電器都無法作單數電池充電,因此本文接著將要介紹可作單數電池充電之快速充電器。
設計規格
(表一)是不受電池容量、放電狀態差異,可作單數電池快速充電的「Active Charger」充電器的設計規格一覽。鎳氫、鎳鎘電池用於快速充電器設計上常見的問題是電池盒的接觸阻抗,尤其是電池盒的負極端經常因阻抗發熱溶化變形。此外接觸阻抗會造成不穩定的電壓下降,形成快速充電器的另一項障礙,因此大部份的充電器進行充電時都會利用方式監控電池電壓,一旦充電電壓開始減緩就立即停止充電動作,然而實際上該電壓變化量非常微小,而且電池電壓的檢測值包含接觸阻抗造成的不穩定電壓,因此方式經常造成所謂的誤動作現象。
表一 Active Charger設計規格一覽
項目 |
規格 |
輸入電源 |
DC5V±5%,2.1A以上 |
電池種類 |
鎳氫、鎳鎘電池 |
電池容量 |
可承受1A充電電流的充電電池 |
充電電壓 |
公稱值1.2V |
充電輸出數量 |
4個(不可串聯) |
充電電流 |
‧一般模式:4個各1A
‧Turbo 1模式:單顆單獨充電時1.6A
‧Turbo 2模式:單顆單獨充電時2.0A |
開始充電 |
電池裝填於專用電池盒,連接電池後自動檢測 |
停止充電條件 |
‧取出電池時
‧檢測時
‧total timer的time up(180分)
‧合併使用break through方式與dV down方式 |
檢測分解能力 |
full scale約2.18V時為10bit(2.1mV) |
檢測間隔 |
1秒 |
預備充電 |
禁止-
檢測時間(3分) |
裝填檢測時間 |
1.5秒 |
顯示充電狀態 |
針對各電池,LED點滅閃爍 |
Monitor輸出 |
利用serial間隔100ms,輸出內部主要變數 |
設計步驟
(圖一)(a)是三號NiMH(1800mAH)充電電池以1C(1.8A)充電時手指接觸電池,電池盒兩端與數位多功能電錶連接,並用EasyGPIB收集資料,藉此測試接觸阻抗對電池電壓影響的結果。若與圖一(b)未作手指接觸的充電電池的測試結果比較時,圖1(a)的電壓變動非常明顯,不過兩圖的垂直scale幾乎完全相同,這意味著上述兩方式都無法利用檢測電池電壓。
Active Charger利用total充電timer與檢測兩種方式檢測電池的充電完成度。為增加電池的適用範圍,所以加長充電timer的設定時間,相對的充電完成度幾乎完全依賴的檢測,有鑑於此為提高檢測精度,因此開發下列兩種方案提供使用者選擇:
break through方式
電壓下降主要是接觸阻抗與充電電流兩者相乘的積所造成,基本上零接觸阻抗並無法達成,因為充電電流若變成零,理論上就不會發生電壓下降現象。如(圖二)所示檢測電壓前與檢測電壓後,暫時停止充電電流所謂的「break through方式」。
由於本快速充電器具備特殊的充電控制技術,因此無法使用MAX713特殊IC,必需改用8位元微處理器PIC16F876。
《圖二 break through方式的動作特性 》 |
|
(圖三)是利用圖一介紹的電池與Active Charger,進行充電時的充電特性。基本上它是在充電中途用手指觸摸電池,使接觸阻抗產生變化,接著利用幾乎不會對system DMM自動檢測造成任何影響的R655檢測充電電壓,由於DMM的測定值內包含電池盒與connector產生的電壓下降成份,因此實際電壓變動非常大,不過對PIC微處理器的A-D變換值而言,完全不會造成任何不良影響,由此可知採用break through方式,可以獲得正確的電池電壓變化資料。
此外本快速充電器是利用serial信號,依序輸出PIC微處理器內部變數狀態,因此可輕易利用PC監控(monitor)PIC微處理器內部狀況,如圖三所示。具體方法是利用DMM檢測電壓,再經過GP-IB與Easy GPIB擷取資料,並用Excel同步觀測設備內外的狀態。值得一提的是Easy Comm.與Easy GPIB是自行開發的free tool。
《圖三 以1.6A充電時A-D變換值與利用DMM的電池電壓測定值》 |
|
dV counter方式
雖然接觸阻抗的影響可以利用break through方式排除,不過充電電流如果發生變動,電池電壓也會隨著改變,如此一來break through方式就無法發揮預期效果,此外本快速充電器被設計成可作充電電流切換,因此必需採用其它對策,才能有效克服接觸阻抗的影響。
(圖四)是充電電池的充電曲線實例,由圖可知由於充電模式的切換,電池電壓會朝下方移動,造成檢測電路誤動作與停止充電等後果,為防止這種現象因此出現所謂的「dV counter方式」。
若與前測定值比較,dV counter方式即使發生變化,dV counter都可控制在±1範圍內,亦即在+1~-1之間,如果是0的場合便停止counter,因此不會有低於0的困擾。
(圖五)(a)是正常狀態時的電池電壓與dV counter的變化,由圖可知電壓變化出現增加趨勢時,雖然dV counter維持0狀態,不過一旦出現電壓變化減緩趨勢時,電壓變化會隨著檢測時段逐漸成為counter up狀態,到達一定值(大約是4)時,檢測便結束充電動作。
圖五(b)是充電途中檢測值朝下方移動時的dV counter動作特性,由圖可知對dV counter的影響,不因電壓變動減緩始終維持1 counter,因此幾乎不會影響的檢測。如果的檢測改用微分電路,檢測電路在圖五(b)狀態時,就會發生誤動作。有關dV counter,理論上即使檢測電壓產生巨大變化,dV counter都能控制在±1範圍內。
《圖五 充電時電池電壓與dV counter的動作特性》 |
|
(圖六)是實際充電電壓(A-D轉換值)與dV counter的動作特性,由圖可知雖然充電中途如果改變充電電流,檢測值會朝下方移動,不過即使如此對dV counter完全沒有影響。一旦接近,dV counter值會呈現上升傾向,直到4 counter時才停止。由於本快速充電器停止充電後,必需重新設定變數所以無法描繪最終值,不過根據以上實驗結果顯示dV counter方式,基本上已經展現預期的動作效果。
《圖六 A-D轉換與dV counter的動作特性》 |
|
電路結構
(圖七)是本快速充電器的電路圖。雖然利用PIC微處理器可使電路結構變得非常簡潔,不過本電路仍可作各種複雜模式的充電動作。有關PIC微處理器周邊電路的特性,基於篇幅限制無法詳細說明。電路圖右側兩個對稱部份是本快速充電器的主要電路。
(圖八)是主要電路概要說明圖,雖然它是由block 0與block 1所構成,不過兩個block的動作特性完全相同,因此只介紹block 0的動作特性。
圖八的與是簡易定電流電路,該電路利用信號CGH12控制2A充電電流的ON/OFF,此外必需注意的是必需作散熱設計。(PASS 1)與(PASS 2)是電池盒未裝設電池時,可將充電電流作bypass的FET元件。(圖九)是未裝設電池2時,充電電流的流動方式。由於break through方式檢測電池電壓,是在與 ON狀態下進行,所以與的電壓都可獲得GND level基準。