多年来,分析师和开发人员一直在讨论人工智能(AI)和电子设计自动化(EDA)之间的完美匹配。EDA问题具有高维度、不连续性、非线性和高阶交互等特性。现在设计人员面临的问题,在於可以采用哪些更好的方法来应对这种复杂程度,而不是再应用一种过去的经验,并使用这种经验来预测类似问题的解决方案。
|
Mentor透过机器学习等方式,来生成准确的後沉积曲线,藉此强化化学机械抛光建模(CMP)。 |
实际上,人工智能已经开始在EDA领域发挥作用,在过去的几年里出现了大幅的进步。但是若就所有AI的成功面来探讨,类似机器学习、神经网路和深度学习等的AI应用,在EDA设计中找到一席之地的速度很慢。然而,这样的状况正在改变当中。
目前Mentor Graphics就是透过机器学习和神经网路等方式,来生成准确的後沉积曲线,藉此强化了化学机械抛光建模(CMP)。CMP透过平整晶片层,在晶片制造中起到了关键作用。结果取决於被抛光的材料,以及任何给定位置的材料的密度和形状。
由於现在的许多IC电路设计都是更为紧密且微缩,因此CMP後的平面度变化,将会显着影响生产过程的成功率。为了减轻任何可能的负面影响,晶片制造商使用CMP建模来检测潜在的热点,作为其制造设计流程的一部分。
CMP热点分析是用於寻找可能经历CMP後的缺陷设计区域。由於不同材料在CMP制程中表现出不同的腐蚀速率,因此晶圆厂必须在整个晶片上保持恒定的密度平衡,以防止导致金属互连短路和断裂的凸起和凹陷生成。
为了获得最隹的CMP建模精确度,晶片制造商必须能够产生出高品质的CMP前表面轮廓。如果这些轮廓不准确,则CMP後轮廓的CMP模拟结果将受到损害。为了解决这个问题,Mentor的工程师使用机器学习演算法,来对CMP前表面轮廓中的测量数据进行灵敏度分析。他们发现,轮廓依赖性主要受底层图案几何形状的影响。利用这些资讯,研究人员透过神经网路回归计算来模拟CMP的前表面轮廓,并使用底层图案的几何特徵作为输入。然後,神经网路将估计CMP前轮廓,并作为CMP建模的输入,进而提高整个过程的准确性。