账号:
密码:
最新动态
 
产业快讯
CTIMES/SmartAuto / 新闻 /
运用新型神经网路 小资料集也能训练高效人工智慧模型
 

【CTIMES / SMARTAUTO ABC_1 报导】    2020年12月08日 星期二

浏览人次:【2619】

NVIDIA的研究人员把开创性的神经网路训练技术,用於NVIDIA StyleGAN2模型上,以大都会艺术博物馆所提供不到 1,500 张图片的极小资料集,创造出新的 AI 艺术。

图为 StyleGAN2 与 ADA 以大都会艺术博物馆 Collection API 所提供不到 1,500 张图片资料集进行训练而生成的图像
图为 StyleGAN2 与 ADA 以大都会艺术博物馆 Collection API 所提供不到 1,500 张图片资料集进行训练而生成的图像

NVIDIA的研究人员把开创性的神经网路训练技术用於热门的 NVIDIA StyleGAN2模型上,以大都会艺术博物馆所提供不到 1,500 张图片这麽小的资料集,用新的角度去审视艺术品。他们用 NVIDIA DGX系统来加快训练速度,取材自历史人物肖像,创造出新的 AI 艺术。

这项称为自我调整判别器增强 (adaptive discriminator augmentation; ADA) 的技术,将训练所需的影像数量减少了 10 到 20 倍,却依旧能获得良好的训练成果。

生成对抗网路跟大多数神经网路一样,长期以来始终遵循一个基本原则,也就是训练资料越多,模型品质越好。原因在於每个生成对抗网路都由两个合作的网路组成,一个负责建立合成影像的生成器,还有一个根据训练资料学习逼真影像外观相似程度的判别器。

判别器对生成器进行指导,对它生成的每个像素给予回??,以协助提高合成影像的真实感。然而可供学习的训练资料有限,判别器无法帮助生成器彻底发挥其潜力,就像是一个新手教练所经历过的比赛场次,比经验丰富的专家少得多。

通常要用上五万到十万张影像,才能训练出一个高品质的生成对抗网路。但在多数情况下,研究人员手边根本没有几万或几十万张样本影像可供使用。

如果只用几千张影像来进行训练,许多生成对抗网路会无法产生出极具逼真感的影像。判别器只是单纯记住训练影像,无法提供有用的回??给生成器时,就会出现这个称为过度拟合 (overfitting) 的问题。

NVIDIA Research的ADA方法,能够以自我调整的方式来增强资料,代表在训练过程中不同的时间点调整资料增强量,以避免过度拟合。此举让 StyleGAN2 这样的模型就算使用少一个数量级的训练影像,也能达到同样惊人的效果。

NVIDIA 绘图研究部门??总裁 David Luebke 表示:「这些结果代表人们可以使用生成对抗网路来解决问题,这些问题不是得耗费大量时间来取得海量资料,不然就是难以取得这麽大量的资料。我迫不及待地想看看艺术家、医学专家和研究人员,会把这项技术用在哪些领域。」

这项新方法是NVIDIA研究人员在生成对抗网路创新传统中的最新成果,这些研究人员开发出突破性的生成对抗网路模型,像是 AI 绘画应用程式 GauGAN、游戏引擎模仿程式 GameGAN 及宠物照片变脸程式 GANimal。这些应用程式可以在 NVIDIA AI Playground 上取得。

關鍵字: 神经网路  NVIDIA 
相关新闻
印度机器人生态系利用NVIDIA创新 从仓储自动化到最後一哩路配送
NVIDIA乙太网路技术加速被应用於建造全球最大AI超级电脑
NVIDIA将生成式AI工具、模拟和感知工作流程带入ROS开发者生态系
日立轨道公司采用NVIDIA技术推进即时铁路分析
益登打造NVIDIA Jetson资源交流平台 助力落实AI应用
comments powered by Disqus
相关讨论
  相关文章
» 新一代Microchip MCU韧体开发套件 : MCC Melody简介
» 最隹化大量低复杂度PCB测试的生产效率策略
» 公共显示技术迈向新变革
» 大众与分众显示技术与应用
» 掌握多轴机器人技术:逐步指南


刊登廣告 新聞信箱 读者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 远播信息股份有限公司版权所有 Powered by O3  v3.20.1.HK8B59PRQCQSTACUKP
地址:台北数位产业园区(digiBlock Taipei) 103台北市大同区承德路三段287-2号A栋204室
电话 (02)2585-5526 #0 转接至总机 /  E-Mail: webmaster@ctimes.com.tw