2024年全球企業AI採用率持續提升,進而帶動模型管理商機,使得AI生命週期管理成為企業科技投資重點項目。資策會產業情報研究所(MIC)產業分析師楊淳安表示,導入AI生命週期管理的第一步,建議先打穩DevOps基礎,再建立資料與平台自動化,以發揮MLOps的管理價值,後續管理須同等重視DevOps、資料、模型與業務目標,定期檢視並更新四大項目,確保良好的產品化實踐。
資策會MIC綜覽AI生命週期管理主要階段──資料、開發與部署,認為企業建立AI生命週期將有三大主要挑戰。首先,資料處理已占據AI生命週期的八成時間,如何提升資料工程效率已成為建立AI生命週期管理的關鍵;挑戰二,AI生命週期將歷經無數次的模型迭代,如何確保模型在每次迭代過程皆符合治理原則與規範,是應用能否落地的關鍵;挑戰三,在模型測試與部署階段,如何避免發生測試盲點導致的過度信任與營運損失,是產品化實踐的關鍵。產業分析師楊淳安表示,市場已有多元解決方案,企業應視自身需求搭配合適的大廠、新創與自建等多樣化工具,如:資料自動標註平台、合規檢測平台以及自動化部署平台,將可有效克服三大挑戰。