前言
越來越多的終端設備,如個人電腦、伺服器、網路及電信系統等,對電源水平及電源密度的需求持續增加,因此需要更高效能的元件組成電源管理系統。矽一直是增進電源管理系統效能之最重要因素。然而,矽科技經年累月的進步已經大幅降低了MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor;MOSFET)的RDS(ON)及功率半導體所產生的熱能,使得封裝成為器件達到更高效能的限制。隨著系統電流的需求急速增加,眾多先進的功率MOSFET封裝被引入市場。主流封裝類型包括DPAK、SO-8、CopperStrap SO-8、PowerPak、LFPAK、DirectFET及iPOWIR等等。更多的選擇無疑能夠提供更大的設計自由度,但同時也會引起混淆,特別是對於嵌入式電源供應設計人員而言,他們只有有限的資源為這些不熟悉的器件進行試驗。本文將比較每種封裝方式,並特別強調嵌入式應用的不同特性,從而簡化元件的選擇。
新封裝技術的需求
隨著成本與體積的要求不斷提高,以及最近採用的12V分佈式匯流排架構,促使嵌入式負載點(point-of-load;POL)直流/直流電源供應越來越普遍。
標準焊線(wire-bond)SO-8因為其小體積、低高度、標準佈線與合理的效能,幾年來一直成為嵌入式POL電源供應標準封裝的首選。不過,隨著MOSFET矽科技的急速進步,矽的導通電阻RDS(ON)開始達到mΩ以下的範圍,由於標準SO-8的固定無晶片封裝電阻(Die Free Package Resistance;DFPR)特別高,因此阻礙了矽效能的發揮。
焊線SO-8的四種嚴重限制
封裝電阻
一般為1.6mΩ,最新器件的整體MOSFET RDS(ON)中大約有50%來自封裝電阻。主要因為器件利用內部焊線連接源極及引線,如(圖一)a所示。
封裝電感
設有內部焊線之引線架封裝會在閘極、源極與汲極引入寄生電感。源極電感在電路中以共源極電感之方式存在,如(圖二)a所示,並對MOSFET的切換速度造成最巨大的影響。由於矽晶之源極無法直接存取,因此閘極驅動電路及主要電源路徑會分享相同的電感。在電流切換期間,這個電感將產生極高的Ldi/dt效應,降低裝置的開/關速度。這效應顯著影響了高頻切換之效能。
接合點至PCB的熱阻
MOSFET汲極連接至鎔鑄在塑膠上之引線架。消耗之功率必須橫向傳送至汲極引線與PCB,作為主要的熱傳導路徑。源極連接至PCB甚至有更高的熱阻。
接合點至外殼(頂端)的熱阻
由於採用塑膠外殼,標準SO-8對外殼頂端之熱傳導路徑非常差。
SO-8之封裝限制對於電氣與散熱效能都有很大的影響。DPAK可用於解決某些SO-8之散熱限制。不過,由於DPAK體積大、封裝電阻與源極電感高,因此在嵌入式應用上並不非常實用。隨著電流密度需求增加,設計人員很明顯需要一個體積類似SO-8的新封裝技術。
圖一為多種增強型封裝。每一種技術皆透過改善某些或全部標準SO-8之四個主要限制而提升封裝之效能。
CopperStrap SO-8技術
CopperStrap是一種連接技術,它以一層實心銅片覆蓋晶片表面來取代連接源極與引線架的焊線。圖一b顯示CopperStrap SO-8的結構。 CopperStrap為晶片與引線架及PCB間提供在散熱及電氣方面的更佳導通路徑。可降低10~20%之熱阻,封裝時更可為源極連接降低60%的電氣阻抗。更特別的是,藉由將21條2-mil之純金焊線(SO-8封裝所能處理的最大數)更換為CopperStrap,晶片源極阻抗將自1mΩ降低至0.4mΩ。為了釋放由CTE與銅片不協調所產生的熱壓力,填入銀的環氧化物將用作為銅片至鋁合金表面的接合物。銅片的形狀與特性對於熱循環情況下的壓力分配表現扮演關鍵的角色。
CopperStrap對於降低SO-8封裝電阻算是向前進了一大步,並且與傳統SO-8之佈線架構完全相同。事實上因為目前有許多包含CopperStrap之低RDS(ON) SO-8裝置,讓這項技術現在被視為標準SO-8技術。
不過,CopperStrap並未顯著改進Rthj的外殼頂端、Rthj-PCB與來源感抗。故其優勢很快地就被更高電流之需求所超越。
PowerPak技術
SO-8的最大問題之一就在於接合點與PCB間的極高熱阻抗。過度的功率消散會導致矽晶溫度顯著上升。下一個自然封裝之進展為藉由移除引線架下方之鑄造化合物,改由引線架之金屬直接接觸PCB,從而改進晶片與PCB板間的熱接觸。引線架的底側成為大面積的漏極接觸,與PCB進行焊接。其提供一個更大的接觸面以將晶片之熱量導出。而作為副產品,其亦可生產低高度之裝置,因為不需模壓就可減低厚度。圖一c以PowerPak為例說明此封裝技術。在PowerPak的執行方式上,封裝之接腳佈局仍然與SO-8相同,但其厚度則大約只有1mm。PowerPak仍舊保留了CopperStrap技術以維持源極之低接觸阻抗。此技術與MLP、LFPAK、SuperSO8、WPAK、PowerFlat及Bottomless SO-8等技術類似。
PowerPak大幅降低Rthj-PCB,這讓熱能可以更有效地傳導至機板上。不過,因為電流需求急速升高,機板出現熱飽和狀態,因此亦不能夠再傳導太多熱能到機板上。透過頂端散熱器冷卻成為越來越普遍的方式。
DirectFET技術
DirectFET為革命性的概念,可一次解決SO-8的全部四大項限制。圖一d顯示DirectFET封裝應用於MOSFET晶片之情形。矽晶片固定在銅外殼上。封裝之底部包含一顆晶片,特別設計讓源極與閘極可直接焊接至PCB上。銅罐可以在晶圓的另一面成為汲極與機板之連接。這個封裝移除了導致封裝電阻的傳統引線架與焊線,也移除了限制大多數SMT封裝散熱效能之塑膠封裝方式。
這種組態將源極與閘極焊墊與PCB之接觸面積最大化,如此可得最佳的電氣效能與散熱效率。銅罐漏極連接亦提供了另一個途徑供熱量消散,讓散熱器的使用變得更有效率。
DirectFET幾乎完全沒有源極電感,而MOSFET源極端的完全接觸,讓MOSFET閘極的驅動連接與源極終端在高電流路徑中不會引入任何PCB雜散電感,如圖二b所示。因此,DirectFET的高頻切換效能非常的好。
電路實測顯示一個DirectFET,在未採用頂端散熱的情況下,可輕易地取代兩個並聯之SO-8,有時甚至可取代兩個並聯之PowerPAK。若將散熱器連接到外殼時, DirectFET可減少實際所需之並聯MOSFET數量。
DirectFET為一個效能極佳的封裝方式,甚至讓矽再一次成為MOSFET效能再進步的限制因素。
(表一) 不同封裝類型之比較 |