在五年前,一輛全新的汽車可能包含大約60到100個感測器。在今天,這個數字實際上更接近200或更多。隨著車輛不斷變得更加智能和自主,感測器的發展和復雜程度也跟上了步伐。例如,傳統安裝在車輛上的大型LiDAR變得更小、數據更多、效能更高,同時提供更高的解析度。但是,比感測器類型本身更大的進步是能夠獲取來自多種感測器類型的數據,並在強大的計算平台上對這些數據進行網格化。
隨著自動駕駛汽車產業的不斷發展,技術供應商和汽車製造商需要考慮邊緣運算能力、感測器融合、感測器退化、監控以及車輛生命週期內軟體維護與服務之間的成本及性能平衡。
汽車製造商和原始設備製造商面臨的最大挑戰之一,是跟上感測器和數據開發的快速步伐。感測器需要為車輛系統提供必要的數據保真度,以滿足設計要求。例如,如果駕駛市場上任何最新的車輛,它們的感測器將尋找車道標記,並在必要時提供車道的視覺提示。
這些類型的功能很有幫助,但在自動駕駛汽車方面仍然屬於相對初級的能力。在道路上有大量司機、行人、騎自行車者和摩托車的人口,在稠密的大都市地區行駛,需要車輛在瞬間做出停車或轉向的決定,以避免撞到行人或其他車輛。感測器融合開始在這樣的領域發揮作用,做出人類駕駛員在高級駕駛輔助(ADAS)系統做出反應之前,可能無法做出的決定。
為了實現ADAS功能和自動駕駛,如今的汽車配備了越來越多的環境感測器,例如雷達、攝像頭、超聲波和激光雷達等。然而,每個感測器本身都有其侷限性,不能單獨提供有關車輛環境所需的完整信息,以執行安全功能。透過結合來自各種感測器的輸入,可以有足夠的信心生成完整的環境模型,以啟用ADAS功能或自動駕駛功能。作為可以做出關鍵自主決策的自動駕駛系統的一部分,感測器融合系統的設計必須滿足最高的安全和安保標準。