科技部補助清華大學醫環系葉秩光教授,研發出漩渦式超音波聲鉗技術,注射特製的帶氧微氣泡後,可將血液中流動的帶氧微氣泡捕捉並聚集在腫瘤位置,使腫瘤細胞充氧,未來可望捕捉藥物,發展為精準醫療臨床應用模式。
|
/news/2020/07/29/1133241770S.jpg |
化學藥物治療是癌症患者的治療選項之一,藥物藉由全身血液循環流入腫瘤部位殺死腫瘤細胞。但由於不斷循環的血液會使藥物無法停留在腫瘤區域,也會將藥物帶入健康組織,這種藥物輸送模式的治療效率低也不安全。
葉秩光教授注意到腫瘤內部一旦缺氧,會大幅影響化學與放射治療的治療成效,而促使腫瘤缺氧的原因是腫瘤內大多是功能缺陷的不成熟血管,運輸氧氣及養分的能力較差。因此若能精準將氧氣遞送至腫瘤內部,將可改善腫瘤血管的型態及功能,提升腫瘤血管輸送氧氣與藥物的能力,或是增加對放射治療的敏感度,甚至誘發後續抗腫瘤免疫細胞的活化,能多方面提升腫瘤治療效果。
但是該怎麼將氧氣準確輸送至腫瘤?葉秩光教授其實早已布局許久,研發出超音波聲鉗操控微粒與超音波對比劑微氣泡兩大技術,打算發展為精準醫療應用。在科技部補助研究計畫下,從最早2010年提出一種新型概念「漩渦式聲鉗」;之後於國際會議發表「漩渦式聲鉗結合超音波對比劑微氣泡」之研究,利用微氣泡搭載藥物作為藥物載體,並搭配漩渦式聲鉗對微氣泡產生強烈的聲輻射力做操控,能有益於藥物精準遞送至目標區域。
另一方面,團隊發展出磷脂質微氣泡載體,可以把氧氣穩定包覆,並證實能透過改善腫瘤微環境的氧合作用途徑,降低腫瘤缺氧問題,此技術已獲中華民國專利。而為了進一步增加帶氧微氣泡在腫瘤的累積量,團隊提出「帶氧微氣泡結合漩渦式聲鉗改善腫瘤微環境」之研究計畫,利用漩渦式聲鉗技術先蒐集血液中流動的帶氧微氣泡,再精準操控聚集在腫瘤位置並釋放氧氣。
研究團隊表示這項方法是透過非侵入方式精準操控生物體內帶氧微氣泡的分佈,將可以彌補腫瘤血管運輸效率低下的缺陷,先於腫瘤區域大量累積帶氧微氣泡,再驅動微氣泡釋放氧氣以緩解腫瘤缺氧問題,未來甚至可用來操控藥物的分佈位置,使藥物可以大量集中在病灶處而不接觸到正常組織,達到精準醫療藥物遞送。
下一階段,研究團隊將以漩渦式聲鉗為基礎,擴增至現行醫療診斷使用的二維陣列探頭,利用超快速平面波成像技術,以特殊串接波型的方式擊破帶氧微氣泡,達到即時監控帶氧微氣泡在腫瘤中被捕捉並釋放氧氣的過程。希望將來可進入臨床試驗並實際運用於癌症腫瘤治療中,建立一套以帶氧微氣泡治療為基礎的超音波診斷與治療平台,提供一種新型的精準醫療應用模式。
葉教授專研於超音波生物分子診斷與治療以及超音波於藥物輸送與釋放研究,其研究創新突破在於載藥/基因微氣泡顯影劑與奈米材料應用於超音波成像與藥物傳遞/釋放的實現,研究成果的質與量均相當豐碩。其研究的創新與突破包括三個層次:
1.超音波顯影劑開發(藥物/基因載體),包含微氣泡、聲學相變微滴與超疏水聲敏奈米粒子
2.超音波顯影劑成像系統建立與演算法開發
3.從外細胞、動物實驗模型應用與整合
團隊最新研究為漩渦式聲鉗操控微粒之能力用於非侵入式操控藥物與精準釋放藥物的應用。漩渦式聲鉗突破傳統聲鉗無法應用於人體的限制,以陣列式探頭發射出如龍捲風結構的超音波聲場,利用龍捲風於中心處的位能梯度差,形成向中心捕捉的作用力來捕捉粒子,相關技術已獲得美國、歐盟專利。葉教授希望利用漩渦式聲鉗以非侵入方式操控帶氧微氣泡改善腫瘤微環境,進而啟動一系列腫瘤治療途徑,例如誘發腫瘤血管正常化、抗腫瘤免疫活化及抑制腫瘤轉移等。未來也將嘗試利用漩渦式聲鉗操控體內藥物分布,從精準醫療的角度提升用藥安全及效能。
葉教授研究團隊已將實驗室超音波顯影劑研究實際成果推廣於臨床醫學上使用,在2013年1月由數名畢業生成立博信生物科技,資本額600萬,目前完成第四次增資進駐竹北生醫園區,葉教授擔任該公司顧問協助公司產品小型量產與專利佈局等,產品階段已於醫院實際腫瘤燒灼程序下進行協助造影的測試,並完成心肌灌注造影、毒理、安全性動物試驗、配方穩定度、製程驗證等工作,2015年起即與藥廠合作生產並進行GLP臨床前安全性試驗,並於2018年正式取得美國FDA人體臨床試驗許可。
而葉教授研究團隊希望利用本計畫之漩渦式聲鉗以非侵入方式在生物體內操控帶氧微氣泡的優勢,用以改善腫瘤微環境,未來可望進行臨床試驗並實際運用於癌症腫瘤治療中。並建立一套以帶氧微氣泡治療為基礎的精準超音波診斷治療平台,實現醫用超音波診斷與治療一體化。團隊預計將上述之研究成果轉化成專利,把技術導入商業化,並規劃2020年成立醫材新創公司。未來4年科技部將跨部會推動精準健康戰略產業,布局下世代精準健康產業發展藍圖,達成產業創新翻轉並實現2030全齡精準健康之未來願景。