在5G的发展中,毫米波将会带来新一波的成长契机。由於在2017年,3GPP的Release 15规范已经将5G通讯使用的频段正式定义在Sub-6 GHz(450MHz~6 GHz),以及毫米波(24.25 GHz~52.6 GHz)等两个频段。而美国联邦通信委员会(FCC)也已经确定於2018年11月开始进行28GHz频段的营运执照竞标,这将会带来许多新兴应用的发展机会。
|
相较於传统用於LTE的蜂巢式频段,毫米波的路径损失高出许多,因此只能覆盖几百英尺以内的范围。 |
当然,5G毫米波的出现,除了带来机会,也伴随着挑战。工研院产业科技国际策略发展所苏明勇经理指出,相较於传统用於LTE的蜂巢式频段(如2GHz),毫米波的路径损失高出许多,因此只能覆盖几百英尺以内的范围。而毫米波讯号的另一个缺点,就是很容易受到日常物品的阻挡,举凡人体、墙壁、树木、或者恶劣天气也都会造成讯号的阻挡。当然这些问题也产生了相对应的解决技术,例如透过波束成型与波束追踪等技术,利用多讯号路径和讯号反射,就容易解决讯号易受阻挡的问题。高通现在也开发出回??演算法,可发展非直线视距(NLOS)传输及非直线视距行动毫米波。
就目前来看,OTA量测是解决5G NR高频测试挑战的最适合方案。5G高频测试的三大挑战,包括了量测准确度:由於天线校准与准确度,治具设备容错范围与讯号反射等因素,会产生量测的不确定性;测试计画复杂:必须将新量测作业整合至装置测试计画中,进行电波暗室整、波束特性等验证;测试时间延长:随着RF频宽持续增加,校准与量测的处理需求与测试时间将会延长。
目前3GPP核准的OTA测试方法,包括直接远场(DFF):涵盖范围领域测试需求,较大辐射天线阵列造成路径损失,适用天线阵列小於5公分的装置;间接远场(IFF):一种新的替代方案,提供比DFF方法距离较远的远场测试环境;近场到远场转换(NFTF):能够降低成本的紧密方法,且仅限於收发器应用,没有接收器或射频叁数测试。