帳號:
密碼:
CTIMES / HK668BU6XP0RNA00BD
科技
典故
P2P-點對點檔案交換

「P2P」,簡單地說就是peer-to-peer—「點對點連線軟體」,意即「使用端」對「使用端」(Client to Client ) 通訊技術,能讓所有的設備不用經過中央伺服器,便能直接聯通散佈資料。
進入High-NA EUV微影時代 (2024.09.19)
比利時微電子研究中心(imec)運算技術及系統/運算系統微縮研究計畫的資深副總裁(SVP)Steven Scheer探討imec與艾司摩爾(ASML)合建的High-NA EUV微影實驗室對半導體業的重要性
2024年:見真章的一年 (2024.07.19)
在日新月異的世界裡,半導體產業持續引領先鋒。舉例來說,你可知道隨著微晶片變得更加先進,電腦的效能已經在幾十年間成長了十億倍嗎?而且未來還有更多值得期待
小晶片大事記:imec創辦40周年回顧 (2024.07.02)
1984年1月,義大利自行車手Francesco Moser創下當時的世界一小時單車紀錄;美國雷根總統正式宣布競選連任;蘋果史上第一台Mac上市。而比利時正在緊鑼密鼓籌備一重大活動,於1月16日正式成立比利時微電子研究中心(imec)
運用能量產率模型 突破太陽能預測極限 (2024.04.17)
能量產率模型(Energy Yield Model)由歐洲綠能研究組織EnergyVille成員—比利時微電子研究中心(imec)和比利時哈瑟爾特大學(UHasselt)所開發,該模型利用由下而上設計方法,精準巧妙地結合太陽能板的光學、溫度及電氣動力學,正在為太陽能預測帶來全新氣象
革命性醫療成像 imec用非侵入超音波監測心臟 (2023.09.23)
比利時微電子研究中心(imec)發表一種革命性醫療成像及監測,他們與新創公司Pulsify Medical研發出新一代超音波技術,推動心臟監測技術朝向非侵入式且無需醫師操作的方向發展
晶背供電技術的DTCO設計方案 (2023.08.11)
比利時微電子研究中心(imec)於本文攜手矽智財公司Arm,介紹一種展示特定晶背供電網路設計的設計技術協同優化(DTCO)方案,其中採用了奈米矽穿孔及埋入式電源軌來進行晶背佈線
可程式光子晶片的未來動態 (2023.07.25)
光子晶片如果能根據不同的應用,透過重新設計程式來控制電路,那麼就能降低開發成本,縮短上市時間,還能強化永續性。
系統技術協同優化 突破晶片系統的微縮瓶頸 (2023.06.25)
本文內容說明系統技術協同優化(STCO)如何輔助設計技術協同優化(DTCO)來面對這些設計需求。
imec觀點:微影圖形化技術的創新與挑戰 (2023.05.15)
此篇訪談中,比利時微電子研究中心(imec)先進圖形化製程與材料研究計畫的高級研發SVP Steven Scheer以近期及長期發展的觀點,聚焦圖形化技術所面臨的研發挑戰與創新。
創新SOT-MRAM架構 提升新一代底層快取密度 (2023.04.17)
要將自旋軌道力矩磁阻式隨機存取記憶體(SOT-MRAM)用來作為底層快取(LLC),目前面臨了三項挑戰;imec在2022年IEEE國際電子會議(IEDM)上提出一套創新的SOT-MRAM架構,能夠一次解決這些挑戰
看好晶片微縮進展 imec提出五大挑戰 (2023.03.13)
面對當代的重大挑戰時,人工智慧應用越來越廣泛,未來的運算需求預計會每半年翻漲一倍。為了在處理暴增的巨量資料的同時維持永續性,需要經過改良的高性能半導體技術
探索埃米世代導線材料 金屬化合物會擊敗銅嗎? (2023.01.19)
大約5年前,imec研究團隊開始探索二元與三元化合物作為未來金屬導線材料的可能性,藉此取代金屬銅。他們設計一套獨特方法,為評估各種潛在的替代材料提供指引。
挑戰未來運算系統的微縮限制 (2022.12.28)
要讓每總體擁有成本(TCO)的晶片性能躍升,系統級設計、軟硬體(電晶體)協同設計優化、同時探索先進算力,以及多元化的專業團隊與能力,全都至關重要。
最新超導量子位元研究 成功導入CMOS製程 (2022.10.20)
imec研究團隊成功實現100μs的相干時間(coherence time),以及99.94%的量子閘保真度(gate fidelity)。首開先例採用CMOS相容製程,未來可望進入12吋晶圓廠,實現高品質的量子電路整合
非銅金屬半鑲嵌製程 實現窄間距雙層結構互連 (2022.08.05)
imec展示全球首次實驗示範採用18nm導線間距的雙金屬層半鑲嵌模組,強調窄間距自對準通孔的重要性,同時分析並公開該模組的關鍵性能參數,包含通孔與導線的電阻與可靠度
5G專網的三大部署攻略 (2022.06.07)
新一代的Wi-Fi網路持續跟緊5G步伐升級效能,不僅提升資料傳輸率,更把延遲、時間同步誤差與可靠度納入考量。本文仔細衡量上述兩項網路技術的優缺,並為了提前部署無線通訊專網,統整出三大攻略

  十大熱門新聞

AD

刊登廣告 新聞信箱 讀者信箱 著作權聲明 隱私權聲明 本站介紹

Copyright ©1999-2024 遠播資訊股份有限公司版權所有 Powered by O3
地址:台北市中山北路三段29號11樓 / 電話 (02)2585-5526 / E-Mail: webmaster@ctimes.com.tw